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Micromagnetic simulations are elaborated to describe the magnetic dynamics in ferromag-
netic bodies. In these simulations, most of the time is spent on the evaluation of the mag-
netostatic field in the magnetic material. This paper presents a new numerical finite
difference scheme for the evaluation of the magnetostatic field based on the fast multipole
method (FMM). The interactions between finite difference cells are described in terms of
far and near field interactions. The far field computations are conducted using the spherical
harmonic expansion of the magnetostatic field while the near field computations are accel-
erated using fast Fourier transforms (FFT). The performance of the presented FMM scheme
is studied by comparing the scheme with a pure FFT scheme. The FMM scheme is more
memory efficient and more flexible then the FFT scheme. It is accurate and still has a good
time efficiency.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Since long research has been performed on the magnetization dynamics in ferromagnetic materials. This ongoing re-
search is based on numerical simulations incorporating the micromagnetic theory and has made it possible to understand
the magnetic dynamics at a microscopic time and space scale [1]. The micromagnetic theory has mainly been adopted in
the development of storage media, see e.g. [2,3]. However, growing computer resources have opened the opportunity of
applying the micromagnetic theory also to larger magnetic bodies [4], where the relation between the microstructure of
the material and its magnetic properties is studied.

Two major difficulties are encountered in numerical schemes for the simulation of ferromagnetic bodies: first, the inte-
gration of the Landau–Lifshitz equation which describes the dynamic behavior of the magnetic dipoles [5] and second, the
computation of the magnetostatic field which describes the long range interaction between the magnetic dipoles. For the
integration of the Landau–Lifshitz equation, stable implicit [6,7] and explicit [8] time stepping schemes are presented that
keep the amplitude of the magnetic dipoles fixed and ensure a decrease of the total free energy when a constant magnetic
field is applied, which are two key properties of the Landau–Lifshitz equation.

This paper focusses on the computation of the magnetostatic field Hms in the magnetic body. This field satisfies Maxwell
equations
. All rights reserved.
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r �Hms ¼ �r �M ð1Þ

r �Hms ¼ 0; ð2Þ
with M the local magnetization. In a general micromagnetic simulation the evaluation of the magnetostatic field Hms is the
most time consuming part. Moreover, Hms is evaluated several thousand times during one simulation. Hence, there is a need
for fast and memory efficient techniques for the evaluation of the magnetostatic field in large ferromagnetic bodies.

Finite difference (FD) schemes for the evaluation of magnetostatic fields are widely used. In these schemes the magnetic
body is discretized in cubic cells. The magnetostatic field values are computed in the centers of each cell. Since the magne-
tization is considered uniform in a FD cell, analytical expressions can be used to describe the magnetostatic field generated
by a FD cell [9,10]. However, the direct computation of magnetostatic fields using analytical expressions is slow. Indeed,
when N FD cells are considered, this direct approach needs OðN2Þ computations to compute Hms in each FD cell. Furthermore,
the analytical expressions contain various analytical functions which are time intensive to compute.

Fast Fourier transforms (FFT) have been very popular to reduce the computational cost to OðN log NÞ, see e.g. [11,12].
Since very fast implementations of FFT algorithms are developed that can be used as a black box [13], the implementation
of FFT based schemes for the evaluation of the magnetostatic field is straight forward. These schemes have some drawbacks:
(i) the domain under study has to be a rectangular prism. Hence, more complex geometries have to be embedded in a rect-
angular domain, adding FD cells containing no magnetic material, which introduces some overhead; (ii) all FD cells have to
be equal in size and placed on a regular grid excluding the possibility of adaptive discretization; (iii) FFT based schemes use a
large amount of memory resources largely due to the need of zero padding [11]. However, FFT based schemes are very fast
and robust so they should be used as a reference to study the performance of other numerical schemes for the evaluation of
the magnetostatic field.

In order to overcome (some of) the drawbacks FFT schemes encounter, numerical schemes can be adopted describing the
generated magnetostatic fields in terms of multipole expansions. These multipole schemes all go back to the fast multipole
method (FMM) introduced by Greengard in [14]. The fast multipole method is adopted to numerous physical problems: elec-
trostatic problems e.g. [15], fluid dynamics e.g. [16], molecular dynamics e.g. [17], electromagnetic scattering problems e.g.
[18], acoustics e.g. [19], etc. In the micromagnetic research area the use of multipole methods is not yet well spread. The fast
Fourier transform on multipole (FFTM) technique [20] has been developed by Ong et al. as a combination of the FMM and FFT
method. They have used this scheme to describe recording techniques e.g. [21]. This method is more flexible then a pure FFT
scheme and has a controllable error bound. However, the performance of the FFTM scheme has not yet been compared with
e.g. a pure FFT scheme. The method still needs a considerable amount of memory resources, while the authors state in [21]
‘However, as the two algorithms scale differently with p, FFTM is not necessarily more efficient than FMM’, with p referring
to the number of multipole coefficients (see further). Visscher et al. use an FMM algorithm based on Cartesian expansions,
see e.g. [22].

This paper presents an FMM scheme based on spherical harmonic expansions for the evaluation of the magnetostatic field
in a ferromagnetic body. In the next section we will describe how the geometry is discretized in FD cells. Sections 3 and 4
describe how, respectively the far and near field computations are elaborated. In the fifth section, the performance of the
presented scheme is investigated by comparing it with an FFT scheme.

2. Geometry description

The three-dimensional ferromagnetic body can have all possible shapes. It is divided into cubical FD cells using a tree
structure defining the FMM tree as described in [14]. The ferromagnetic body is enclosed by a cubic box. This enclosing
box is called the root: the box on level zero of the FMM tree. On a next level (level one) the root box is divided into 8 smaller
cubical boxes with identical volumes. These are called the children of the root box. Vice versa, the root box is the parent box of
the 8 smaller boxes. This division is performed recursively until the boxes on the lowest level (level LEV) in the tree have the
desired dimension. In the case of a non-cubic ferromagnetic body, the boxes that do not contain any magnetic material are
neglected. In what follows the body will be considered cubical. This does not affect the applicability of the scheme to non-
cubic ferromagnetic bodies. Other definitions used to describe the FMM tree:

� Two boxes are said to be neighbors if they are at the same refinement level and share a boundary point (a box is a neighbor
of itself).

� Two boxes are said to be well separated if they are at the same refinement level and are not neighbors.
� With each box i an interaction list is associated, consisting of the children of the neighbors of i’s parent which are well sep-

arated from box i.

These definitions are illustrated in Fig. 1.
The bookkeeping of the boxes is based on the binary structure of the FMM tree [23]. At each level L the boxes get an iden-

tity number (id) from 0 to 8L � 1. The binary tree structure allows to determine various quantities using computations that
can be implemented at bit-level (using bit shift procedures). This results into bookkeeping computations which are negligi-
ble compared with other computations: given the id and the level of a box, the parent of the box, the neighbors of the box
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Fig. 1. Definitions used in the FMM theory. The definitions in the middle figure are with respect to the gray colored box. The dark colored boxes in the right
figure define the interaction list of the gray colored, central box.
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and the center coordinates of the box are found almost instantaneously when the binary structure of the tree is exploited.
Vice versa, the id of the box containing a point with given coordinates at a given level can be determined also almost
instantaneously.

In this implementation of the FMM algorithm, the boxes on the lowest level LEV are called basis boxes. Each basis box
itself is further subdivided in cubical FD cells. The number of FD cells in a basis box is 8lev: in each dimension 2lev FD cells.
Hence, the total (cubical) geometry contains 8LEVþlev FD cells. Fig. 2 shows a geometry described with a tree containing 2 lev-
els ðLEV ¼ 2Þ and basis boxes containing 2lev ðlev ¼ 3Þ FD cells in each direction.

In the FMM theory a distinction is made between boxes that are far from each other and boxes that are near to each other.
Boxes that are far from each other interact via their far field which is outlined in Section 3. Neighboring basis boxes interact
with each other via near field computations, this is outlined in Section 4. The dimensions of the basis boxes will influence the
time spent on near and far field computations. Depending on the difference in computation time of the far field computa-
tions and the near field computations an optimal tree can be constructed. Indeed, for a geometry with 8tot lev FD cells differ-
ent parameters LEV and lev can be combined such that LEVþ lev ¼ tot lev, i.e. different sizes of basis boxes can be used. The
optimal size of the basis boxes depends on the computational time. This discussion is repeated in Section 5.

3. Far field computations

This section explains the computations of the magnetostatic fields due to FD cells that are part of well separated basis
boxes. It is shown how the magnetic field is rewritten in terms of expansions of spherical harmonics. The far field compu-
tations are based on the classical FMM theory of Greengard [14]. This classical theory is summarized and extended to mag-
netic dipole sources. The used translation operators are accelerated, exploiting symmetries and convolution structures. It is
the intention to develop an algorithm that allows to compute the magnetostatic fields multiple times for different magnetic
configurations in a fast way. Hence, generic computations are performed as much as possible during the set up phase of the
algorithm in order to avoid duplicating computations.
Fig. 2. A tree with LEV = 2 and lev = 3.
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3.1. Classical theory

The magnetostatic field in a point r generated by a FD cell with volume V 0ðr R V 0Þ satisfies Maxwell Eqs. (1) and (2). When
Green functions are used, this field can be written as
HmsðrÞ ¼ �
Ms

4p

Z
V 0
rr 1
jr� r0j �mðr

0Þdr0 ¼ Ms

4p
r
Z

V 0
r0 1
jr� r0j �mðr

0Þdr0 ð3Þ
where the r0 operator acts on r0. In the micromagnetic theory all FD cells are considered to be uniformly magnetized with a
fixed magnetization amplitude Ms and a varying magnetization orientation given by the unit vector m (r0) [1]. The vectors r
and r0 are defined in spherical coordinates as
r0 ! ðq;a;bÞ
r! ðr; h;/Þ:
Now the kernel 1=jr� r0 j can be rewritten in an expansion of spherical harmonics, using the spherical harmonic addition the-
orem for Legendre polynomials PnðxÞ [24]. In the case of q < r this gives
1
jr� r0j ¼

X1
n¼0

qn

rnþ1 Pn
r � r0
rr0

� �
¼
X1
n¼0

Xn

m¼�n

qnY�m
n ða;bÞ

Ym
n ðh;/Þ
rnþ1 : ð4Þ
The spherical harmonic Ym
n ðh;/Þ is defined as
Ym
n ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� jmjÞ!
ðnþ jmjÞ!

s
Pjmjn ðcosðhÞÞeim/ ð5Þ
with
Pm
n ðxÞ ¼ ð�1Þmð1� x2Þm=2 dm

dx
PnðxÞ: ð6Þ
The magnetostatic field (3) can now be written in terms of the scalar magnetic potential wðrÞ as
HmsðrÞ ¼
Ms

4p
rwðrÞ: ð7Þ
When the addition theorem (4) is introduced, wðrÞ is given by
wðrÞ ¼
Z

V 0
r0
X1
n¼0

Xn

m¼�n

qnY�m
n ða;bÞ

Ym
n ðh;/Þ
rnþ1 �mdV 0 ¼

X1
n¼0

Xn

m¼�n

Z
V 0
r0qnY�m

n ða;bÞ �mdV 0
� �

Ym
n ðh;/Þ
rnþ1

¼
X1
n¼0

Xn

m¼�n

Om
n ðmÞ

Ym
n ðh;/Þ
rnþ1 : ð8Þ
This defines the expansion coefficients Om
n ðmÞ of a FD cell with uniform magnetization M ¼ Msm. Now analytical expressions

will be derived for the expansion coefficients.

3.1.1. Computation of the expansion coefficients Om
n ðmÞ of a cubical FD cell

Above, the expansion coefficients Om
n ðmÞ of a cubical FD cell with uniform magnetization m are defined as
Om
n ðmÞ ¼

Z
V
rqnY�m

n ða; bÞdV �m: ð9Þ
Applying Gauss’ theorem gives
Om
n ðmÞ ¼

Z
oV

qnY�m
n ða;bÞudS �m ð10Þ
with u the normal unit vector pointing outward of the cell and oV the boundary surface of the cell. The explicit computation
of the expansion coefficients is done by determining the contributions from each surface of the cubical FD cell with edge
length of 2D and adding them:
Om
n ðmÞ ¼ �

Z D

�D

Z D

�D
qnY�m

n ða;bÞdxdy
����
z¼�D

þ
Z D

�D

Z D

�D
qnY�m

n ða;bÞdxdy
����
z¼D

� �
mz

þ �
Z D

�D

Z D

�D
qnY�m

n ða; bÞdxdz
����
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þ
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Z D

�D
qnY�m

n ða; bÞdxdz
����
y¼D

 !
my

þ �
Z D

�D

Z D

�D
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n ða;bÞdydz
����
x¼�D
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Z D

�D

Z D

�D
qnY�m

n ða; bÞdydz
����

x¼D

� �
mx: ð11Þ
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When qnY�m
n ða; bÞ is expressed in Cartesian coordinates
qnY�m
n ða;bÞ ¼ ðx2 þ y2 þ z2Þn=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� jmjÞ!
ðnþ jmjÞ!

s
Pjmjn

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p !
x� iyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p !m

ð12Þ
and the resulting expressions are simplified exploiting some symmetry properties this leads to
Om
n ðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� jmjÞ!
ðnþ jmjÞ!

s
�
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n odd;m odd
2mx

R D
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R D
�DðD
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n
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p
� �
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p
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n odd;m even
mz
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n
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p
� ��
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p
� �	

x�iyffiffiffiffiffiffiffiffiffi
x2þy2
p
� �m

dxdy
:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
ð13Þ
Here and further on, the number of expansion coefficients is truncated to n < p. The expansion of the magnetic potential (8)
is valid everywhere except inside the circumscribing sphere of the box [14].

The multipole (MP) expansions (13) are the basis of the FMM theory. In the FMM algorithm the MP expansions of the FD
cells are combined and translated to define MP expansions of larger groups on lower levels. To compute the magnetostatic
field in a group, the outgoing MP expansions from well separated groups are reformulated: the magnetostatic field generated
by well separated groups, described by their MP expansions is translated into a local expansion valid in the considered group.
These local expansions are translated to local expansions valid in the basis boxes. In what follows the used translation oper-
ators will be presented. An extended discussion on the translation of MP expansions and local expansions as well as error
bounds can be found in [25].

3.1.2. MP to MP translation operator
To translate a MP expansion Om

n from the center of a box to a MP expansion Mk
j at the center of its parent, the following

translation operator is used
Mk
j ¼

Xj

n¼0

Xminðkþj�n;nÞ

m¼maxðkþn�j;�nÞ
ð�1Þnijkj�jmj�jk�mj A

m
n Ak�m

j�n

Ak
j

rnY�m
n ðh;/ÞO

k�m
j�n : ð14Þ
ðr; h; /Þ are the spherical coordinates of the center of the parent, seen in the coordinate system of the considered box. Am
n is

defined as:
Am
n ¼

ð�1Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�mÞ!ðnþm!Þ

p : ð15Þ
For each parent box, 8 MP to MP translations have to be performed. Fig. 3(a) sketches the MP to MP translations.

3.1.3. MP to local translation operator
To translate a MP expansion Om

n from the center of a box to a local expansion Lk
j at the center of a box at the same level, the

following translation operator is used
Lk
j ¼

Xp�1

n¼0

Xn

m¼�n

ð�1Þjijk�mj�jkj�jmj A
m
n Ak

j

Am�k
jþn

Ym�k
jþn ðh;/Þ
rjþnþ1 Om

n : ð16Þ
ðr; h; /Þ are the spherical coordinates of the center of the box to where the MP expansion is translated, seen in the coordinate
system of the considered box. For each box, 189 MP to local translations have to be performed (except for the boxes near the
edge of the computation domain). Fig. 3(b) sketches the MP to local translations.

3.1.4. Local to local translation operator
To translate a local expansion Om

n from the center of a parent box to a local expansion at the center of a child, the following
translation operator is used
Lk
j ¼

Xp�1

n¼j

Xk�jþn

m¼k�nþj

ijmj�jm�kj�jkj A
m�k
n�j Ak

j

Am
n

rn�jYm�k
n�j ðh;/ÞO

m
n : ð17Þ
ðr; h; /Þ are the spherical coordinates of the center of the child box, seen in the coordinate system of the parent box.
For each parent box, 8 local to local translations have to be performed. Fig. 3(c) sketches the local to local translations.
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Fig. 3. Sketch of (a) MP to MP translations, (b) MP to local translations and (c) local to local translations.
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3.1.5. Local to field translation operator
To compute the field in a point ðr; h; /Þ in a basis box with local expansion Lm

n at the center of the basis box, the gradient
has to be taken of the scalar potential wðrÞ
HmsðrÞ ¼
Ms

4p
rwðrÞ ¼ Ms

4p
Xp

n¼0

Xn

m¼�n

Lm
nrrnYm

n ðh;/Þ: ð18Þ
After the action of the gradient operator on rnYm
n the expression is rotated back to Cartesian coordinates, which results in
Hms ¼
Ms

4p

cos / sin h cos / cos h � sin /

sin / sin h sin / cos h cos /

cos h � sin h 0

264
375�

PP
Lm

n nrn�1Ym
n ðh;/ÞPP

Lm
n rn�1

ffiffiffiffiffiffiffiffiffiffiffiffi
ðn�jmjÞ!
ðnþjmjÞ!

q
� cos h

sin h ðnþ 1ÞPjmjn ðcos hÞ



þ 1
sin h ðn� jmj þ 1ÞPjmjnþ1ðcosðhÞÞ

�
eim/PP

iLm
n m rn�1

sin h Ym
n ðh;/Þ

26666664

37777775; ð19Þ
where the sums are performed over nð0 6 n < pÞ and mð�n 6 m 6 nÞ.

3.1.6. Scaling of the classical translation operators
The expansion coefficients of the spherical harmonics – MP expansions and local expansions – are stored in a vector stor-

age scheme. Since the number of expansion coefficients is truncated to n < p there are p2 expansion coefficients. In this stor-
age scheme, the computation of the MP coefficients of a FD cell (13) needs 3p2 multiplications. Indeed, the integrals in (13)
are identical for every FD cell (all FD cells have equal dimensions), thus they can be computed in the set up phase of the
algorithm and stored in three vectors Om

n;x;O
m
n;y and Om

n;z


 �
. The MP expansion Om

n ðmÞ of a FD cell with uniform normalized
magnetization m ¼ ½mx;my;mz� is then determined by a linear combination of the three vectors Om

n;x;O
m
n;y and Om

n;z
Om
n ðmÞ ¼ mxOm

n;x þmyOm
n;y þmzO

m
n;z: ð20Þ
Since the MP and local expansion coefficients are stored in a vector, the action of the MP to MP, the MP to local and the local
to local translation operators as given in (14), (16) and (17) can be seen as matrix–vector products which are performed by p4

multiplications. All translation matrices are computed and stored in the set up phase of the algorithm.
In that way the MP expansion of a basis box containing 8lev FD cells can be computed by first computing the 8lev MP

expansion in each FD cell and then translating the 8lev MP expansions to the center of the basis box. This is performed using
8lev � 3p2 þ 8lev � p4 multiplications. When the MP to MP translation operators (14) are denoted by Tq

jk;nm ðq ¼ 1; . . . ;8levÞ, this
scheme looks like
Mk
j ¼

X8lev

q¼1

X
n

X
m

Tq
jk;nm mq

xOm
n;x þmq

yOm
n;y þmq

z Om
n;z


 �
: ð21Þ
This is accelerated by computing the translated MP expansions
P

n

P
mTq

jk;nmOm
n;i (q ¼ 1; . . . ;8lev and i ¼ x; y; z) of the FD cells in

the set up phase and storing these 3� 8lev translated expansions. In that way, the resulting MP expansion is computed by
making a linear combination of the translated quantities

P
n

P
mTq

jk;nmOm
n;i
Mk
j ¼

X8lev

q¼1

mq
x

X
n

X
m

Tq
jk;nmOm

n;x þmq
y

X
n

X
m

Tq
jk;nmOm

n;y þmq
z

X
n

X
m

Tq
jk;nmOm

n;z

 !
: ð22Þ
This scheme needs only 3� 8levp2 multiplications to determine the MP expansion of a basis box.
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Applying the local to field translation operator (19) on a local expansion leads to 3p2 multiplications relating the 3 com-
ponents of the magnetostatic field with the p2 local expansion coefficients, in matrix notation: Hms ¼ Gm

n ðr; h;/ÞL
m
n . The 8lev

different local to field translation matrices Gm
n ðr; h;/Þ are computed and stored in the set up phase of the algorithm.

3.2. Acceleration of the MP to local translations

In the presented scheme, the computation of the MP expansion of a basis box and the local to field translations are Oðp2Þ
operations, while the MP to MP, the MP to local and the local to local translations are Oðp4Þ operations. In this scheme the
number of MP to local translations is very large. Indeed, since each box on each level has an interaction list containing 189
boxes (boundary effects not taken into account) 189 MP to local translations have to be performed per box. This is in contrast
to the 8 MP to MP translations and 8 local to local translations performed for each box in the FMM tree. To illustrate this,
Table 1 shows the exact number of MP to MP, MP to local an local to local translations in the case of a cubic body discretized
using different numbers of levels. N is the total number of basis boxes. From this table it is understood that almost all exe-
cution time in the far field computations goes to the translation of MP expansions to local expansions. In what follows, our
attention will go to the acceleration of the MP to local translation.

Many accelerated translation schemes are proposed for the MP to local translation operator. In [25] a scheme is described
where all translations are performed in the z-direction after a local rotation of the MP coefficients. In this coordinate system
the translation operators are diagonal, leading to p2 translations. However, the rotation of the MP coefficients towards this
coordinate system and the back-rotation of the computed local coefficients scale as Oðp3Þ. These rotations have to be per-
formed on each MP expansion and differs for each direction of the translation. An other faster MP to local translation scheme,
also proposed by Greengard in [25] uses the plane wave expansion in stead of the MP expansion to translate the radiation
spectrum of a box. Once the plane wave (i.e. exponential) expansion is known for a certain box, the translation operator is
diagonal, hence the translation scales asOðp2Þ. The computation of the plane wave expansion from the MP expansion and the
computation of the local expansion from the plane wave expansion are Oðp3Þ calculations. This conversion from MP expan-
sion to plane expansion has to be performed on each MP expansion, but can be used for any translation in any direction. The
conversion of the resulting local plane wave expansion into the local expansion is also an Oðp3Þ calculation. This scheme is
fast, but has some overhead especially for small p the gains are minimal. Other implementations of the MP to local operator
are based on the classical Oðp4Þ formulation but optimally exploit the use of basic linear algebra subprogram (BLAS) routines
[26]. A good overview and performance comparison of different MP to local operator schemes is given in [26]. The different
schemes are sketched in Fig. 4.

3.2.1. FFT accelerated scheme: theory
Another scheme, proposed by Elliott and Board Jr. [27] uses the fact that the MP to local translation operator (16) can be

written as a convolution, see also [17,28]. This can be seen as follows:
Table 1
Numbe

# Level

4
5
6
7
8

Lk
j ¼

Xp�1

n¼0

Xn

m¼�n

ð�1Þjijk�mj�jkj�jmj A
m
n Ak

j

Am�k
jþn

Ym�k
jþn ðh;/Þ
rjþnþ1 Om

n ð23Þ
ð�1Þjijkj

Ak
j

Lk
j ¼

Xp�1

n¼0

Xn

m¼�n

ijk�mj

Am�k
jþn

Ym�k
jþn ðh;/Þ
rjþnþ1 i�jmjAm

n Om
n ð24Þ
ð�1Þjijkj

Ak
�j

Lk
�j ¼

Xp�1

n¼0

Xn

m¼�n

ijk�mj

Am�k
�jþn

Ym�k
�jþnðh;/Þ
r�jþnþ1 i�jmjAm

n Om
n ð25Þ
¼
Xp�1

n¼0

Xn

m¼�n

ijk�mj

A�ðk�mÞ
�ðj�nÞ

Y�ðk�mÞ
�ðj�nÞ ðh;/Þ
r�ðj�nÞþ1 i�jmjAm

n Om
n : ð26Þ
Eq. (26) has a convolution structure. Indeed, entities ð�1Þjijkj=Ak
�jL

k
�j, defined by parameters j and k, are computed through a

summation of entities i�jmjAm
n Om

n , defined by parameters n and m, multiplied by a transfer function that is only defined by the
differences k�m and j� n. Hence, Eq. (26) can be written as the convolution
ym
�n ¼ hm

�nHxm
n ð27Þ
r of translation operators in a cube discretized using different numbers of levels

s N MP to MP MP to local Local to local

4096 512 56,448 512
32,768 4608 640,584 4608
262,144 37,376 6,039,504 37,376
2,097,152 299,520 52,337,672 299,520
16,777,216 2,396,672 435,570,912 2,396,672
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Fig. 4. Sketch of the MP to local translation schemes using the classical matrix–vector multiplication scheme (top, Oðp4Þ), using rotation based translation
operators (top, Oðp3Þ) and using plane wave based translation operators (bottom).
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with
ym
n ¼
ð�1Þnijmj

Am
n

Lm
n ð28Þ
hm
n ¼

ijmj

A�m
n

Y�m
n

rnþ1 ð29Þ
xm
n ¼ i�jmjAm

n Om
n : ð30Þ
Here, the negative values �n in ym
n and the transfer function hm

n give rise to local expansions and spherical harmonics with
negative degrees. Therefore, the entities ym

n and hm
n are extended to negative values as follows:
ym
�n ¼ ym

n ð31Þ

hm
�n ¼ hm

n : ð32Þ

The negative degrees �n affect the alignment of the corresponding matrices x and h in coefficient space. For p ¼ 3 the trans-
fer matrix h is
h ¼

h0
0 0 0 0 0 0 h0

�4 h0
�3 h0

�2 h0
�1

0 0 0 0 0 0 h1
�4 h1

�3 h1
�2 h1

�1

0 0 0 0 0 0 h2
�4 h2

�3 h2
�2 0

0 0 0 0 0 0 h3
�4 h3

�3 0 0

0 0 0 0 0 0 h4
�4 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 h�4

�4 0 0 0

0 0 0 0 0 0 h�3
�4 h�3

�3 0 0

0 0 0 0 0 0 h�2
�4 h�2

�3 h�2
�2 0

0 0 0 0 0 0 h�1
�4 h�1

�3 h�1
�2 h�1

�1

26666666666666666666664

37777777777777777777775

: ð33Þ
The transfer matrix has values up to degree 2ðp� 1Þ since these also occur in the MP to local translation operator (16). This
so called double height kernel [26] gives rise to matrices with dimensions 2ð2p� 1Þ � 2ð2p� 1Þ. For p ¼ 3 the matrices x and
y in (27) are
x ¼

x0
0 x0

1 x0
2 0 0 0 0 0 0 0

0 x1
1 x1

2 0 0 0 0 0 0 0
0 0 x2

2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 x�2

2 0 0 0 0 0 0 0
0 x�1

1 x�1
2 0 0 0 0 0 0 0

266666666666666666664

377777777777777777775

and y ¼

y0
0 0 0 0 0 0 0 0 y0

�2 y0
�1

0 0 0 0 0 0 0 0 y1
�2 y1

�1

0 0 0 0 0 0 0 0 y2
�2 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 y�2

�2 0
0 0 0 0 0 0 0 0 y�1

�2 y�1
�1

266666666666666666664

377777777777777777775

: ð34Þ
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These matrices need no further zero padding to avoid disturbing side effects originating in the cyclic nature of the Fourier
transformation. Moreover, the matrix dimensions can still be reduced by removing the pth to (2p�1)th column containing
only zeros. In (33) and (34) the fourth, fifth and sixth column can be removed: in general this leads to matrix dimensions of
ð3p� 2Þ � 2ð2p� 1Þ.

3.2.2. FFT accelerated scheme: stability issues
The discussion above seems to appear complete, but the implementation of it leads to numerical instabilities due to the

Am
n factors, the qn term in the MP expansions (9) and the r�ðnþ1Þ term in the transfer functions (29), which may cause the

coefficients to vary by many orders of magnitude. This results in inaccurate evaluations of the Fourier transforms. To alle-
viate this problem, the coefficients need to be scaled for a unit box before the FFT method can be applied. To translate
the MP expansion of a box with edges 2D the elements ym

n (28), hm
n (29) and xm

n (30) have to be redefined as
ym
n ¼
ð�1Þnijmj

Am
n

ð2DÞnþ1Lm
n ð35Þ

hm
n ¼

ijmj

A�m
n

2D
r

� �nþ1

Y�m
n ð36Þ

xm
n ¼

i�jmjAm
n

ð2DÞn
Om

n : ð37Þ
For single precision computations, this solves the problem only for p < 7. For larger p values, the quantities Am
n vary too much

in magnitude. In the computation of the magnetostatic field considered here, values of p < 7 turn out to be sufficient, see
further. When a higher accuracy is required, more expansion coefficients are needed. For these higher p-values the FFT
scheme is still applicable, but a block decomposition of the matrices y, h and x has to be made [27,17,28] leading to a slower
algorithm.

3.2.3. Scaling of the FFT accelerated scheme
The paragraphs above explain how the MP to local translation is accelerated with fast Fourier transforms. In the set up

phase of the algorithm the transfer matrices h are computed, Fourier transformed and stored. These matrices are identical
on every level because of the rescaling to transfer matrices of unit boxes. They only differ depending on the (rescaled) vector
r which defines the translation. In total 316 different transfer matrices exist.

Once the aggregation step of the FMM algorithm is performed (i.e. the MP expansions are translated from the lowest level
up to the highest level) the MP expansion in every box on every level are known. Before starting the disaggregation step, for
each MP expansion the corresponding Fourier transformed matrix ~x is computed (the tilde indicates Fourier transformed
quantities) and stored. These computations consist of two phases. First the MP expansion values Mm

n are multiplied with
i�jmjAm

n ð2DÞ�n and stored at the corresponding place in the matrix x. These are Oðp2Þ computations. The values
i�jmjAm

n ð2DÞ�n differ for every level and are computed in the set up phase of the algorithm. Second, the matrix x is Fourier
transformed. This is performed using FFTW [13] which uses an Oðp2 log pÞ algorithm. Since the MP expansion coefficients
are not needed any more when the ~x is known, both entities can be stored in the same memory space, saving memory
requirements.

Once the Fourier transformed matrices ~x are computed and stored for every box on every level, the disaggregation step
starts. During the disaggregation step, the MP expansions of the boxes in the interaction list (189, considering no side effects)
are translated towards the considered box. This is performed by adding the point wise multiplications of the matrices ~x of
the source boxes with the corresponding Fourier transformed transfer functions ~h. When no side effects are considered 189
translations consisting of ð3p� 2Þ2ð2p� 1Þmultiplications have to be performed. Hence, the translations itself require Oðp2Þ
operations. Once all point wise products are performed and added ~y is known.

In the next step ~y is Fourier transformed back to real space, which is an Oðp2 log pÞ computation. The resulting local
expansion values are extracted from the matrix y, divided by the quantity ð�1Þnijmjð2DÞnþ1

=Am
n and stored. These computa-

tions scale as Oðp2Þ. The values ð�1Þnijmjð2DÞnþ1=Am
n differ for every level and are computed in the set up phase of the

algorithm.
The total FFT accelerated scheme is shown in Fig. 5. This scheme is much faster since the fast execution of the 189 point

wise products exceeds the overhead in the scheme (rescaling, copies, Fourier transformations). An analog scheme can be
elaborated to perform the MP to MP and the local to local translations, however, the time gain for these translations is
not guaranteed for small p since only 8 translations occur for each box instead of 189. It is not possible to perform the aggre-
gation an disaggregation completely in Fourier space, for a further discussion see [27].

3.3. Exploiting symmetries

The translation operations can still be accelerated when symmetry properties of the spherical harmonics are exploited.
The MP and local expansion coefficients satisfy the following symmetries:
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Fig. 5. Sketch of the MP to local translation schemes using the classical matrix–vector multiplication scheme (top), using FFT accelerated translation
operators (bottom).
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M�m
n ¼ Mm

n ð38Þ

L�m
n ¼ Lm

n : ð39Þ
The redundant negative orders �m can be omitted and only the positive orders 0 6 m < p have to be stored. This reduces the
memory needed to store a MP expansion and a local expansion from p2 numbers to pðpþ 1Þ=2 numbers. In what follows we
will comment on the time and memory gains that are obtained when these symmetries are incorporated.

3.3.1. Acceleration of the MP to MP and the local to local translation
Since only the positive orders of the expansion coefficients are stored, the expansions of the source (the child in case of a

MP to MP translation and the parent in case of a local to local translation) have to be extended with the negative orders be-
fore the actual translation. Second, the translated expansions (only these with positive order m) can be determined by per-
forming a matrix vector product of roughly half the size (the matrix has dimensions pðpþ 1Þ=2� p2). Compared with the
classical translation scheme outlined in (3.1.6), this scheme is roughly twice as fast. However, since the number of MP to
MP translations and local to local translations is small compared with the number of MP to local translations, the total time
gain is negligible. The most important gain here is the memory reduction obtained for the storage of the MP and local expan-
sions and the translation matrices.

3.3.2. Acceleration of the MP to local translation
In the MP to local translation operator, the symmetries (38) and (39) give also rise to possible memory reduction and

faster execution times. Indeed, half of the data in the Fourier transformed matrices ~x; ~h and ~y is conjugated to the other half.
Consequently, in the MP to local translation scheme only half of the elements have to be taken into account: when the matri-
ces x are Fourier transformed, only half of the matrix ~x is stored, i.e. ð3p� 2Þð2p� 1Þ elements. During the actual translation,
only these elements have to be taken into account for the point wise multiplication. When this is done for all 189 boxes in
the interaction list, the second half of the matrix ~y is reconstructed based on the first half. After inverse Fourier transforming
the matrix, the local expansion is extracted. The MP to local translation scheme is shown in Fig. 6.

In this scheme the number of point wise products is halved in comparison with the scheme outlined in Section 3.2. Since
the MP to local translation is responsible for almost the total execution time for the far field computations, this part of the
CPU time is roughly halved when this scheme is used. Also the memory needs are reduced: in stead of storing the total num-
ber of ð3p� 2Þ2ð2p� 1Þ elements of the matrix ~x in each box, only half of the elements has to be stored.

3.3.3. Acceleration of the local to field translation
In Section 3.1.6 it was outlined that magnetic field components Hms;iði ¼ x; y; z) are computed by the matrix–vector prod-

uct Hms ¼ Gm
n Lm

n . Since also the elements of the local to field translation matrix G satisfy the symmetry property
G�m
n;i ¼ Gm

n;i ð40Þ
the number of multiplications for the determination of the magnetic field from the local expansions is decreased to less then
half of the original number of multiplications:
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Fig. 6. Sketch of the MP to local translation schemes using the classical matrix–vector multiplication scheme (top), using FFT accelerated translation
operators and exploiting the symmetries in the Fourier transformed matrices (bottom). This scheme has half the number of point wise products compared
with the scheme of Fig. 5.
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Hms;i ¼
Xp�1

n¼0

Re G0
n;i


 �
Re L0

n;i


 �
þ 2

Xn

m¼1

Re Gm
n;i


 �
Re Lm

n;i


 �
� Im Gm

n;i


 �
Im Lm

n;i


 �n o" #
: ð41Þ
Hence, the elements with negative order in the transfer matrix do not have to be computed (set up phase) and stored.

4. Near field computations

Up to now all mathematical machinery is provided to calculate the magnetostatic field Hms originating from FD cells in
basis boxes that are well separated, i.e. from FD cells in basis boxes that are not adjacent to the considered basis box. To
compute the total magnetic field in a FD cell also the FD cells in the adjacent basis boxes (26 in number) and the FD cells
in the considered basis box itself have to be taken into account. This so called near field has to be computed and added to
the far field contribution. The expression for the magnetostatic field HmsðriÞ in the center of a FD cell i originating from N
FD cells with uniform normalized magnetization mj with box center rj;j ¼ 1; . . . ;N and volume V is given by
HmsðriÞ ¼ �
MS

4p
XN

j¼1

Z
V
rðri � rj þ qÞ �mj

jri � rj þ qj3
dq: ð42Þ
This expression is identical to (3). Applying Gauss’ theorem on it gives
HmsðriÞ ¼ �
MS

4p
XN

j¼1

Z
oV

ðri � rj þ qÞ �mj

jri � rj þ qj3
uSdq ð43Þ
with uS the normal unit vector pointing outward of the surface oV of the FD cell. The integration has to be performed over
each cell with identical volume V. Since a classical computation scales OðN2Þ, the computations have to be accelerated
exploiting the convolution structure of (43). Two numerical schemes exploiting the convolution structure of (43) are possi-
ble, both based on FFTs.

4.1. Near interactions with FFTs: Scheme 1

In this scheme the vector ri � rj between two FD cells is rewritten with respect to the centers of their basis boxes
ri � rj ¼ r0i � r0j � Kq: ð44Þ
The vector Kq points from the center of the considered basis box to the center of the qth neighbor (q = 1,. . .,27). This is shown
in Fig. 7. The total magnetostatic field (43) is now written as



q

r ri j- ri’

rj’

2Δ

λ

V

Fig. 7. Vectors used in the near interaction Scheme 1.
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Hmsðr0iÞ ¼ �
MS

4p
X27

q¼1

X8lev

j¼1

Z
oV

ðri0 � r0j � Kq þ qÞ �mðrjÞ
jr0i � r0j � Kq þ qj3

uSdS: ð45Þ
In this near interaction scheme, the FD cells of each basis box are taken into account one basis box after another. Written as a
convolution product this becomes
HmsðrÞ ¼
X27

q¼1

gðr;KqÞHmðrÞ; ð46Þ
with gðr;KgÞ the Green function which in this case is a symmetrical tensor
gðr;KqÞ ¼ �MS

4p

Z
oV

r� Kq þ q

jr� Kq þ qj3
uSdS: ð47Þ
With k the size of the edges of the basis boxes, Kq is one of the 27 vectors
Kq ¼ Ikex þ Jkey þ Kkez

I ¼ �1;0;1
J ¼ �1;0;1
K ¼ �1; 0;1

8><>: : ð48Þ
Expressions (43)–(47) make clear that the magnetostatic field Hms in the FD cells of the considered basis box (the one in the
middle of Fig. 7) is computed by:

(1) Zero padding the magnetization vectors of the basis boxes separately.
(2) Fourier transforming the magnetization data of step 1.
(3) Performing the point by point products of the Fourier transformed magnetization vectors (from step 2) with the

proper Green function tensor gðr;KqÞ and adding the 27 results.
(4) Inverse Fourier transforming the result from step 3 to real space.
(5) Selecting the magnetostatic fields from the data obtained in step 4.

When the edges of the FD cells have length 2D, the elements of the Green function tensors gðr;KqÞ of (47) are
gI;J;K
xx ðx;y;zÞ¼

�Ms

4p

Z D

�D

Z D

�D

x� IkþD

½ðx� IkþDÞ2þðy� JkþgÞ2þðz�KkþfÞ2�3=2�
x� Ik�D

½ðx� Ik�DÞ2þðy� JkþgÞ2þðz�KkþfÞ2�3=2

( )
dgdf

ð49Þ

gI;J;K
yy ðx;y;zÞ¼

�Ms

4p

Z D

�D

Z D

�D

y� JkþD

½ðx� IkþnÞ2þðy� JkþDÞ2þðz�KkþfÞ2�3=2�
y� Jk�D

½ðx� IkþnÞ2þðy� Jk�DÞ2þðz�KkþfÞ2�3=2

( )
dndf

ð50Þ

gI;J;K
zz ðx;y;zÞ¼

�Ms

4p

Z D

�D

Z D

�D

z�KkþD

½ðx� IkþnÞ2þðy� JkþgÞ2þðz�KkþDÞ2�3=2�
z�Kk�D

½ðx� IkþnÞ2þðy� JkþgÞ2þðz�Kk�DÞ2�3=2

( )
dndg

ð51Þ
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gI;J;K
xy ðx;y;zÞ¼

�Ms

4p

Z D

�D

Z D

�D

y� Jkþg
½ðx� IkþDÞ2þðy� JkþgÞ2þðz�KkþfÞ2�3=2�

y� Jkþg
½ðx� Ik�DÞ2þðy� JkþgÞ2þðz�KkþfÞ2�3=2

( )
dgdf

ð52Þ

gI;J;K
xz ðx;y;zÞ¼

�Ms

4p

Z D

�D

Z D

�D

z�Kkþf

½ðx� IkþDÞ2þðy� JkþgÞ2þðz�KkþfÞ2�3=2�
z�Kkþf

½ðx� Ik�DÞ2þðy� JkþgÞ2þðz�KkþfÞ2�3=2

( )
dgdf

ð53Þ

gI;J;K
yz ðx;y;zÞ¼

�Ms

4p

Z D

�D

Z D

�D

z�Kkþf

½ðx� IkþnÞ2þðy� JkþDÞ2þðz�KkþfÞ2�3=2�
z�Kkþf

½ðx� IkþnÞ2þðy� Jk�DÞ2þðz�KkþfÞ2�3=2

( )
dndf

ð54Þ
The Green function tensors are computed and Fourier transformed during the set up phase of the algorithm. The zero pad-
ding in the three dimensions is needed to avoid side effects due to the cyclic nature of Fourier transforms. Hence, all Fourier
transforms have dimensions 2 � 2lev � 2 � 2lev � 2 � 2lev.

4.2. Near interactions with FFT’s: Scheme 2

This scheme uses the expression (43) without redefinitions of vectors. Written as a convolution product, expression (43)
looks like
HmsðrÞ ¼ gðrÞHmðrÞ ð55Þ
with
gðrÞ ¼ �MS

4p

Z
oV

rþ q

jrþ qj3
uSdS: ð56Þ
The elements of this Green tensor are those of (47) with I ¼ J ¼ K ¼ 0. Hence, expressions (49)–(54) can be used with
I ¼ J ¼ K ¼ 0. In this scheme the magnetic data of all the neighboring basis boxes and the considered basis box itself is trans-
lated to the considered basis box in one computation step. Therefor the magnetic data of all the basis boxes have to be rear-
ranged and zero padded. Hence the magnetostatic field Hms is computed by

(1) Assembling and zero padding the magnetization data.
(2) Fourier transforming the input from step 1.
(3) Performing the point wise products of the Fourier transformed vectors from step 2 with the Green function tensor gðrÞ
(4) Inverse Fourier transforming the result from step 3.
(5) Selecting the magnetostatic fields from the considered basis box from the result of step 4.

Since in each direction 3 basis boxes are considered in this scheme, the dimension of the block to be Fourier transformed
is 3 � 2lev � 3 � 2lev � 3 � 2lev. Then, after zero padding, all Fourier transforms should have dimensions 6 � 2lev � 6 � 2lev � 6 � 2lev.
However, the zero padding is needed for not ‘spoiling’ the Fourier transformed data with side effects due to the cyclic nature
of the Fourier transforms. In this scheme, one is only interested in the data computed for the central basis box and not in the
magnetostatic fields computed for the neighboring boxes. Hence, the data for these neighboring basis boxes can be spoiled
with side effects. Taking this into account, the magnetic data needs only one third of zero padding (2lev zeros) in each direc-
tion, reducing the dimensions of the Fourier transforms to 4 � 2lev � 4 � 2lev � 4 � 2lev.

4.3. Computational complexity of the two near interaction schemes

In what follows, the data matrices used in the convolution products will be denoted by a capital. A tilde denotes the Fou-
rier transformed values of the matrices. In that way the matrices containing the zero padded values of the magnetic com-
ponents of the considered FD cells are denoted by Mx;My and Mz while the elements of the Green function tensors (47)
and (56) are matrices Gxx;Gxy;Gxz;Gyy;Gyz and Gzz.

The first near interaction scheme is comparable with the MP to local translation in the far field computations. Indeed, in a
preparatory step of the near field computations, the magnetization data of all basis boxes is Fourier transformed. This con-
sists of two phases: for the three components x; y; z the magnetization data is copied into a zero padded matrix, this is an
Oðn3Þ operation (with n ¼ 2lev the number of FD cells in one direction in a basis box). The three matrices are then Fourier
transformed (Oðð2nÞ3 log 2nÞ operations) and stored. Thus with Nbox the number of basis boxes, there are 3Nbox forward Fou-
rier transforms of dimensions 2 � 2lev � 2 � 2lev � 2 � 2lev. These Fourier transformed magnetization values are used (27 times
pro basis box) during the actual computation of the magnetostatic field.
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The first step in the actual computation of the near fields in a basis box consists of performing the point wise products.
eHx;i ¼
X27

q¼1

eGq
xx;i
eMq

x;i þ eGq
xy;i
eMq

y;i þ eGq
xz;i
eMq

z;i

h i
; ð57Þ

eHy;i ¼
X27

q¼1

eGq
xy;i
eMq

x;i þ eGq
yy;i
eMq

y;i þ eGq
yz;i
eMq

z;i

h i
; ð58Þ

eHz;i ¼
X27

q¼1

eGq
xz;i
eMq

x;i þ eGq
yz;i
eMq

y;i þ eGq
zz;i
eMq

z;i

h i
: ð59Þ
Since the magnetization data and the Green function values have real values in real space, half of the data is adjoint to the
other half in Fourier space. When this property is exploited, each translation of Fourier transformed magnetization values to
the considered basis box takes roughly 9ð2nÞ3=2 multiplications. For one basis box these computations have to be performed
27 times: once for each neighboring box and once for the considered box itself. So, in total their are 27� 9ð2nÞ3=2 ¼ 972n3

multiplications pro basis box. The results are added to each other. The resulting Fourier transformed magnetostatic field val-
ues eHx; eHy and eHz are then inverse Fourier transformed (Oðð2nÞ3 log 2nÞ operations) and the magnetostatic field values are
extracted out of the result (Oðn3Þ operations). Thus with Nbox the number of basis boxes, there are also 3Nbox inverse Fourier
transforms of dimensions 2 � 2lev � 2 � 2lev � 2 � 2lev.

In the second near interaction scheme the forward Fourier transformations of the magnetization data are not computed in
a preparatory step since the Fourier transformed magnetizations eMx; eMy and eMz are only used once pro basis cell (in contrast
with Scheme 1). This also means that this data is not stored in every basis cell, saving roughly 3� 8levþ1Nbox complex num-
bers of memory. The first step in the computation of the magnetostatic field in a basis box is the assembly of the 3 zero pad-
ded matrices Mx;My and Mz containing the magnetization data of the 27 basis boxes (Oð27� n3Þ operations). In a second step
this data is forward Fourier transformed (Oðð4nÞ3 log 4nÞ operations). With Nbox the number of basis boxes, there are 3Nbox

forward Fourier transforms of dimensions 4 � 2lev � 4 � 2lev � 4 � 2lev. Then the Fourier transformed data is multiplied point
wise with the Fourier transformed Green tensor elements
eHx;i ¼ eGxx;i

eMx;i þ eGxy;i
eMy;i þ eGxz;i

eMz;i; ð60Þ

eHy;i ¼ eGxy;i
eMx;i þ eGyy;i

eMy;i þ eGyz;i
eMz;i; ð61Þ

eHz;i ¼ eGxz;i
eMx;i þ eGyz;i

eMy;i þ eGzz;i
eMz;i: ð62Þ
Hence, there are 9ð4nÞ3=2 ¼ 288n3 multiplications pro basis box, which is a much smaller number then in Scheme 1. More-
over, since the matrices Gxx;Gxy;Gxz;Gyy;Gyz and Gzz containing the Green tensor elements are even, their Fourier transformed
matrices eGxx; eGxy, eGxz; eGyy; eGyz and eGzz have only strictly real values. This means that the point wise products are not complex
� complex multiplications as in Scheme 1, but real � complex multiplications, which are performed roughly twice as fast.

The resulting Fourier transformed magnetostatic field values eHx; eHy and eHz are then inverse Fourier transformed
(Oðð4nÞ3 log 4nÞ operations) and the field values are extracted out of the result (Oðn3Þ operations). Thus there are also
3Nbox inverse Fourier transforms of dimensions 4 � 2lev � 4 � 2lev � 4 � 2lev.

Hence, comparing the two schemes, one concludes that Scheme 2 is the most memory efficient since the Fourier trans-
formed values are not stored in each basis box. The time efficiency depends on two considerations. First, the number of FFTs
is equal: 3Nbox forward and 3Nbox inverse FFTs in both schemes, but the dimensions of the Fourier transformed matrices are
different. In Scheme 1 the matrix dimensions are half of those in Scheme 2 (2n� 2n� 2n$ 4n� 4n� 4n), resulting in a
much faster execution of the FFTs in the first scheme. Second, in Scheme 1 there are 972n3 complex � complex point wise prod-
ucts, while in the second scheme there are 288n3 real � complex point wise products, resulting in a much faster execution of
the point wise product in the second scheme. Which of the two schemes is the fastest depends thus partly on how fast the FFTs
are executed.

4.4. Acceleration of the used FFTs

The standard routine in FFTW [13] can be used for the execution of a 3D real to complex FFT. This is a very fast routine to
Fourier transform matrices with real elements in 3D. A 3D FFT contains three phases, when transforming a matrix with
dimensions N � N � N these phases are: (i) Fourier transforming the N2 arrays in z-direction, (ii) Fourier transforming the
N2 arrays in the y-direction and (iii) Fourier transforming the N2 arrays in the x-direction. So in total their are 3N2 1D FFTs
of arrays of dimension N. As a consequence, when this routine is used to Fourier transform zero padded matrices, 1D FFTs are
performed on arrays containing only zeros, which is useless. Omitting the 1D FFTs on arrays containing only zeros acceler-
ates the 3D FFT.

In the case of a zero padded matrix as in near interaction Scheme 1 this is shown in Fig. 8. The three different phases of the
3D FFT are shown. From Fig. 8(a) it is clear that only a quarter of the z-arrays contains non-zero values, thus only N2=4 1D
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Fig. 8. Overview of the data during the different phases of the 3D forward FFT for a zero padded matrix as in near interaction Scheme 1. The gray areas
correspond with arrays in the in-plane direction (a: z-direction, b: y-direction, c: x-direction) containing non-zero values.
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FFTs are performed. From Fig. 8(b) it is clear that after the Fourier transformations on the z-arrays only half of the y-arrays
contains non-zero values, thus only N2=2 1D FFTs are performed. Fig. 8(c) shows that after the Fourier transformations on the
z- and y-arrays all x-arrays contain non-zero values, thus all N2 1D FFTs have to be performed. This means that only 7=4N2 1D
FFTs instead of 3N2 are performed during the forward Fourier transformations of the matrices in Scheme 1. For the inverse
Fourier transforms, this scheme is performed in the opposite direction, starting with Fig. 8(c) and ending with Fig. 8(a).
Applying this scheme on the computations of the 3D FFTs in Scheme 1 reduces the time spend on FFTs to about 58% of
the original time.

In the case of a zero padded matrix as in near interaction Scheme 2 the three different phases of the forward 3D FFT are
shown in Fig. 9. From Fig. 9(a) it is clear that only 9/16 of the z-arrays contain non-zero values, thus only 9=16N2 1D FFTs are
performed. From Fig. 9(b) it is clear that after the Fourier transformations on the z-arrays three quarters of the y-arrays con-
tain non-zero values, thus only 3=4N2 1D FFTs are performed. Fig. 9(c) shows that after the Fourier transformations on the z-
and y-arrays all x-arrays contain non-zero values, thus all N2 1D FFTs have to be performed. This means that only 37=16N2

instead of 3N2 1D FFTs are performed during the forward Fourier transformations of the magnetization matrices in Scheme 2.
Applying this scheme on the computations of the 3D forward FFTs in Scheme 2 reduces the time spend on the forward FFTs
to about 77% of the original time.

For the inverse 3D FFTs in near interaction Scheme 2, one is only interested in the results corresponding with magneto-
static fields in the considered basis box, which is the one in the center of Fig. 6, moreover, all other data is spoiled by side
effects of the Fourier transformations since the matrices containing the magnetization data where only zero padded with n
zeros in every direction. Hence one can reduce the number of 1D FFTs to only FFTs on meaningful data, which is data that has
influence on the resulting magnetostatic field values of the considered basis box. Fig. 10 shows the arrays that contain mean-
ingful data during the different phases of the inverse 3D FFT. From Fig. 10(a) it is clear that all the x-arrays contain mean-
ingful data, thus all N2 1D (inverse) FFTs have to be performed. From Fig. 10(b) it is clear that after the Fourier
transformations on the x-arrays, only one quarter of the y-arrays contains meaningful data, thus only N2=4 1D (inverse) FFTs
are performed. Fig. 10(c) shows that after the Fourier transformations on the x- and y-arrays only 1/16 of the z-arrays con-
tains meaningful data, thus only N2=16 1D (inverse) FFTs are performed. This means that only 21=16N2 in stead of 3N2 1D
(inverse) FFTs are performed during the inverse Fourier transformations of the magnetization matrices in Scheme 2. Apply-
ing this scheme on the computations of the 3D inverse FFTs in Scheme 2 reduces the time spend on the inverse FFTs to about
43% of the original time.
x
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Fig. 9. Overview of the data during the different phases of the 3D forward FFT for a zero padded matrix as in near interaction Scheme 2. The gray areas
correspond with arrays in the in-plane direction (a: z-direction, b: y-direction, c: x-direction) containing non-zero values.
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Fig. 10. Overview of the data during the different phases of the 3D inverse FFT as used in near interaction Scheme 2. The gray areas correspond with arrays
in the in-plane direction (a: x-direction, b: y-direction, c: z-direction) containing meaningful values.

Table 2
Timing of the two near interaction schemes for one basis box in milliseconds (Fw: forward, Inv: inverse)

Scheme 1 Scheme 2

lev 2 3 4 2 3 4

copy m (ms) 0.002 0.013 0.083 0.028 0.420 2.43
FFT Fw (ms) 0.007 0.083 0.844 0.114 1.100 11.8
products (ms) 0.540 3.680 52.5 0.078 0.745 6.71
FFT Inv (ms) 0.013 0.093 0.790 0.055 0.570 7.55
copy Hms (ms) 0.004 0.001 0.05 0.004 0.011 0.12

Total (ms) 0.566 3.870 54.27 0.279 2.846 28.61
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4.5. Timing of the two near interaction schemes

Now that the optimal FFT schemes are known, a comparison between the two near interaction schemes is possible to
determine the fastest scheme. Table 2 shows the timings of the subroutines and the total timing for the computation of
the near interactions for one basis box. One concludes that the second near interaction scheme is by far faster than the first
near interaction scheme for all sizes of the basis box. In Scheme 1 almost all computation time goes to the computation of the
point wise products while in the second near interaction scheme most of the computation time is divided between the
assembling of the magnetization matrices, the forward and inverse Fourier transforms and the point wise products. More-
over, the second scheme needs much less memory. Indeed, in Scheme 1 the three Fourier transformed magnetization matri-
ces have to be stored in each basis box, while this is not the case in the second scheme. It is obvious that the second scheme is
used in the algorithm to compute the near interactions. However, since the FFT scheme for the near interactions introduces
some overhead, the direct classical computation of the magnetostatic field is faster for basis boxes with lev < 2.

5. Performance study

This section discusses the performance of the presented FMM algorithm. To evaluate the time and memory consumption,
comparison is made with a pure FFT scheme. The FFT scheme is based on the expression (43) of the magnetostatic field. As in
the near field computations of the FMM scheme, the magnetostatic field is computed by zero padding the three 3D matrices
containing the magnetic components of the uniformly magnetized FD cells. In Fourier space, the Fourier transformed mag-
netization values are multiplied pointwise with the Fourier transformed Green’s function elements. The magnetostatic field
values are then obtained by inverse Fourier transforming the pointwise products. In contrast with the near interaction com-
putations, all FD cells are included in one big computation to determine the magnetostatic field values in all FD cells at once.
The used FFTs are optimized, thus 1D FFTs on arrays containing only zeros are excluded as in Fig. 8. The precision of the FFT
scheme corresponds with the machine precision. Since all computations – FMM and FFT – are conducted with single preci-
sion, this corresponds with a precision of about 6 digits.

In what follows, simulations are conducted on cubical magnetic bodies to evaluate the performance of the FMM algo-
rithm. The discretization is done as explained in Section 2, so all FD cells are equal in size and placed on a regular grid.
As discussed in the introduction, these conditions are optimal for the use of an FFT scheme. Hence, it can be expected that
the FFT scheme will outperform the FMM scheme with respect to CPU time. However, the difference in CPU time between
both schemes under these FFT suited conditions should be acceptable. The slower execution time of the FMM scheme should
be compensated with a smaller memory consumption and more flexible applicability of the FMM scheme. The simulations
are performed using one processor of a dual core AMD Opteron 270 (2� 2 cores) machine with 8 Gbyte memory.



Table 3
Timing of the FMM algorithm for different sample dimensions

64� 64� 64 128� 128� 128 256� 256� 256 512� 512� 512

(5–1) 9.17 s (6–1) 78.83 s (7–1) 663.1 s
(4–2) 2.03 s (5–2) 17.66 s (6–2) 148.4 s (7–2) 20 min 21 s
(3–3) 1.57 s (4–3) 12.88 s (5–3) 104.6 s (6–3) 14 min 59 s
(2–4) 1.76 s (3–4) 14.25 s (4–4) 115.2 s (5–4) 18 min 16 s

(2–5) 17.06 s (3–5) 138.3 s
(2–6) 152.8 s

FFT 0.264 s FFT 2.22 s FFT 22.3 s

Between brackets is mentioned how the total number of levels is divided between far field and near field computations (LEV–lev). The last row shows the
run time for the FFT scheme.
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5.1. CPU time and memory consumption

As mentioned above, cubic magnetic bodies will be considered. This geometry is discretized using 8tot lev FD cells. For a
geometry with 8tot lev FD cells different parameters LEV and lev can be combined, i.e. different sizes of basis boxes can be
used. The optimal size of the basis boxes depends on the total computation time of the algorithm. Table 3 shows the CPU
times for the computations of the magnetostatic fields for samples of different sizes. The used number of MP expansions
p is equal to 6, which is the largest possible p-value avoiding stability problems for the MP to local translation (see Section
3.2.2). Between brackets, the number of levels in the far field computations, LEV, and the number of levels in the near field
computations, lev, is mentioned. In the last row the CPU times for the FFT algorithm are shown.

For all sample dimensions the FMM simulations with lev ¼ 3 need the least execution time. This means that in all sim-
ulations the optimal size of the basis boxes is 8� 8� 8 FD cells (512 FD cells in total). When compared with the FFT scheme,
the FMM scheme is slower, for 64� 64� 64 a factor 5:95, for 128� 128� 128 a factor 5:80 and for 256� 256� 256 a factor
4.70. In the FMM scheme with optimal lev parameter, about 85% of the time goes to near interaction computations.

The memory consumption of the FMM scheme with optimal (LEV–lev) ratio and of the FFT scheme is given in Table 4 for
the different sizes of the sample from Table 3. There is a remarkable difference in memory needs between the two algorithms
(roughly a factor 11 for large dimensions). The sample with dimensions 512� 512� 512 can only be computed with the
FMM scheme since only 8 Gbyte memory is available. The difference in memory needs is due to the very large matrices
in the FFT scheme used for the FFTs (zero padded magnetization data, zero padded field data and Green tensor data).

The scaling of both algorithms is shown in Fig. 11 over a large range of sample dimensions. The CPU time of the FMM
scheme depends almost perfectly linear on the number of FD cells – OðN1:0188Þ dependence – while the CPU time of the
FFT scheme has a small supralinear dependence on the number of FD cells – OðN1:0928Þ dependence. The CPU time spend
on a fast Fourier transform of a matrix depends vastly on the dimensions of the matrix. FFTW performs best for matrices
with dimensions that are products of small primes
Table 4
Memor

FMM
FFT
N ¼ 2a3b5c7d11e13f ð63Þ
with e + f = 0 or 1. Other sizes are computed by means of a slow, general purpose algorithm [29]. This explains the jumps in
the FFT curve in Fig. 11 for large N values. Indeed, while dimensions grow, the sizes for which the condition (63) is met are
more scattered. Hence for larger dimensions, more jumps are expected, which makes the difference in CPU time between the
FMM and FFT scheme even smaller for these large dimensions.

5.2. Accuracy

The accuracy of the far field computations depends on the order of multipoles p used in the computations of the far field.
The near field computations are computed with an accuracy corresponding with machine precision. Because of the stability
problems encountered in the MP to local translations the maximum number of multipoles p is limited to six (in this imple-
mentation), see Section 3.2.2. Theoretical considerations about the accuracy of the FMM scheme are given in [25] where er-
ror bounds are given. Here, the error on the magnetostatic field values computed with the FMM scheme, is given by
comparing the results of the FMM simulations with the results of the FFT simulations.

To make this comparison, magnetic samples in a micromagnetic equilibrium state encountered in the simulation of their
hysteresis loops [11] are used. This is done for different sample dimensions. The normalized root-mean-square error for dif-
y consumption of the FMM scheme with optimal (LEV–lev) division and of the FFT scheme

64� 64� 64 128� 128� 128 256� 256� 256 512� 512� 512

16 MB 64 MB 0.48 GB 3.78 GB
82 MB 654 MB 5.23 GB 41.9 GB (estimation)
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Fig. 11. CPU time (T) for the evaluation of the magnetostatic field in a cubic magnetic body versus the number of FD cells (N) used to discretize the sample.
The upper curve: FMM scheme, the lower curve: FFT scheme.

Table 5
Normalized root-mean-square error of the FMM algorithm for different sample dimensions

64� 64� 64 128� 128� 128 256� 256� 256

(5–1) 2.17 e�3 (6–1) 2.35 e�3 (7–1) 2.48 e�3
(4–2) 2.13 e�3 (5–2) 2.30 e�3 (6–2) 2.44 e�3
(3–3) 1.98 e�3 (4–3) 2.22 e�3 (5–3) 2.37 e�3
(2–4) 1.54 e�3 (3–4) 2.01 e�3 (4–4) 2.24 e�3

(2–5) 1.49 e�3 (3–5) 1.96 e�3
(2–6) 1.36 e�3

Between brackets is mentioned how the total number of levels is divided between far field and near field computations (LEV–lev).
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ferent LEV/lev parameters and different sample dimensions are shown in Table 4. The normalized root-mean-square error is
defined as
error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

jHFMM
ms;i �HFFT

ms;ij
2

jHFFT
ms;ij

2

vuut ð64Þ
From Table 5 it is clear that the error slightly increases when the dimensions of the sample increase. Further, the error de-
creases when the size of the basis boxes increases. This is when lev is large. This is because for large basis boxes a relatively
large number of interactions is computed using near field computations which have an accuracy corresponding with the ma-
chine precision.

The magnetic configurations in different planes of the sample with dimensions of 128� 128� 128 FD cells are shown in
Fig. 12 together with the magnetostatic field values and the local normalized error in the same planes. The local normalized
error depends on the position in the basis boxes: at the edges of the basis boxes, the largest errors occur.

6. Conclusions and prospects

A fast and memory efficient fast multipole algorithm is presented for the evaluation of magnetostatic fields in magnetic
bodies that are discretized using FD cells of equal size, placed on a regular grid. The performance of the FMM scheme is
determined by comparing it with an FFT scheme. This FFT scheme is perfectly suited and generally used to compute the mag-
netostatic field in cubical bodies discretized as described above. It is shown that the presented FMM scheme has a very good
performance. In most numerical algorithms there is a trade of between memory usage and execution time: small memory



Fig. 12. Magnetization (up), amplitude of the magnetostatic field (middle) and normalized rms error on a logarithmic scale (bottom) in planes z ¼ 0 (left)
and z ¼ 16 (right) of a sample with dimensions 128� 128� 128 FD cells.

B. Van de Wiele et al. / Journal of Computational Physics 227 (2008) 9913–9932 9931
requirements generally result in a larger execution time. This is also the case in the presented algorithms. However, in the
FMM scheme there is a very beneficial trade of: the memory savings are very large – about a factor 11 – compared with the
small sacrifices concerning execution time (a factor 4–5). This trade of becomes even better for non-cubical shapes. For in-
stance, when magnetic writing heads are simulated with or without the storage medium itself (see e.g. [30]) the geometry is
far more complex. In the FMM scheme only the magnetic bodies are discretized while in the FFT scheme an enclosing rect-
angular prism has to be discretized (magnetic body and air). Hence the difference in computation time is further decreased.
Fig. 11 also shows that for large dimensions the difference in execution time largely depends on the dimensions of the Fou-
rier transforms used in the FFT scheme.
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The accuracy of the FMM scheme is sufficient for the micromagnetic simulations. A higher accuracy is reached by increas-
ing the number of expansion coefficients ðp > 6Þ. In that case only small changes to the MP to local translations are needed
[27].

The FMM scheme is far more flexible then an FFT scheme. Curved magnetic bodies for example can easily be discretized in
the FMM scheme, but not in the FFT scheme. Indeed, by adjusting the boundaries in the integrals of (13), one can restrict the
integrations to only magnetic material present in the FD cell in stead of the whole FD cell. In the near interaction computa-
tions, small corrections have to be made to compensate for the FD cells with curved elements. In that way, the magnetic body
can have any shape, e.g. ellipsoidal which is a very popular shape to study magnetic reversal processes.

In a more complex variant of this FMM scheme the discretization of the magnetic body can be adaptive, using FD cells of
different shape to describe the magnetic configuration state. This is very interesting since magnetic domains are present in
the studied ferromagnetic samples. These are large uniformly magnetized regions in the material – which can be discretized
with large FD cells – separated from each other by domain walls – which have to be discretized with small FD cells. Extend-
ing the presented FMM scheme with adaptive discretization will dramatically improve its performance.
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